
File System Abstraction

ECE 469, April 10th

Aravind Machiry

1

Storage Technologies

● Tapes
● Magnetic Disks
● Flash Memory

2

How to store data on Disks?

● Writing magnetized dots onto disk platter:
● Each dot: 0/1
● Unit of access: Block (512 or 4K)

We magnetize the surface in
the form of small dots.

3

How do we access storage?

?

4

File System Abstraction

File System
Abstraction

5

What does a File System Store about a
file?

● File Metadata:
● File Name.
● Permissions (read or write).
● owner/group.
● Type of file.
● List of disk blocks that contain data of the file.
● Several others...

6

inode: Structure of metadata

● Indirect Node.

● Each file has one or more inodes corresponding to it.

● Where are inodes stored?
● Disk

● A portion of disk is dedicated to inodes.

7

File inode

8

File Permissions

● Type of accesses:
● Read (R)
● Write (W)
● Execute (X)

● Who can access?
● Owner : A user who owns the file.
● Group : A group to which the file belongs.
● Others: All other users.

9

Permission Bits

● How many bits are needed to stored file permissions?
● 3 Types of accesses X 3 Entities = 9.
● `ls -l`.

● rw-rw-r-- …
● Bit Pattern (664): 110110100
● User, Group, Others

● Change Permissions:
● e.g., chmod 775 <filePath>

10

Accessing File System From User Space

● System calls:
● create/open/read/write/stat/etc.

11

Directories

● Files namespace:
● Helps in organizing files.

● How are they stored?
● Same as files, where the data block contains: List of (filename,

inode) pairs.

12

Single Level Directories

● Single level grouping.
● All users see the same directories.

● Easy to search.
● No grouping.
● Inconvenient naming.

13

Two Level Directories

● Each user can create grouping.
● Path names.

● Efficient search.
● Not enough grouping.

14

Tree Structured Directories

● Directories can now contain files or subdirectories.

● Efficient search and arbitrary grouping!

15

Directory Permissions

● Reading a directory:
● Being able to list all files.

● Writing a directory:
● Write contents into directory: Create a delete inside the directory.

● Executing a directory:
● Able to access individual files in a directory.

● Difference between executing and read?

16

Directory Permissions

17

Mounting File System

● Mapping from a name in a filesystem to root of another
filesystem

● Allows users to manage multiple filesystems through a single
filesystem.

18

Mounting File System

● Mapping from a name in a filesystem to root of another
filesystem

● Allows users to manage multiple filesystems through a single
filesystem.

19

Links: File Aliases

● Multiple files representing the same data.

● How to create file aliases?
● Files having the same inode number.
● A file whose data is the name of the original file.

20

Hard Link

● Files which point to the same inode.

● Hard links should belong to the same filesystem:
● Inode numbers are specific to a file system.

File Name Type Inode Content

foo Regular 4357891 ….

…. …. …. ….

baz Regular 4357891 ….

21

Hard Link : File Deletion

● What happens when a file gets deleted?

● What happens to the inode?
● Reference counting

22

Soft Link

● A file whose data is the path of the original file.

● Soft links can be created across file systems:
● Referenced by file path.

File Name Type Inode Content

foo Regular 4357891 ….

…. …. …. ….

bar Soft Link 4768929 “...foo”

23

Soft Link : File Deletion

● What happens when a file gets deleted?
● target file v/s soft link file

24

Other Permissions

● setuid bit:
● For files with execute permissions.
● The file will always be executed by using owner user id.
● e.g., Network daemon.

● sticky bit
● Users can read/write but only owners can delete.
● e.g., “/tmp” folder.

25

Big Picture

26

Looking into Simple File Systems

● File System Design Considerations.

● Simple File systems: FAT/EXT2.

27

File Access

File name ---------------->
offset

28

File Access

File name ----------------> File Number
offset offset

Directory

29

File Access

File name ----------------> File Number -------------------> Storage block
offset offset

Directory inode

30

Key Data Structures of a FS

● inodes: File metadata and storage blocks

● Directories: Special files that contain:
● File name -> inode

● Freemap: which disk blocks are free/allocated?

31

File System Workload

● File Sizes:
● Are most files small/large?

● Small
● which accounts for total storage: small/large?

● Large

32

File System Workload

● File Sizes:
● Are most files small/large?

● Small
● which accounts for total storage: small/large?

● Large

● File Access:
● Are most file accesses to small/large files?

● Small
● which accounts for more total I/O bytes: small/large?

● Large

33

File System Design

● For Small files:
● Small blocks for storage efficiency.
● File used together should be stored together.

● For Large files:
● Large blocks for storage efficiency.
● Contiguous allocation for fast sequential lookup.
● Efficient lookup for random access.

● Difficult to predict what a file will turn out to be.

34

File Allocation Table (FAT)

● Simple.
● Easy to implement.
● Still used in Phones and Thumb drives.

● Key data structure: File Allocation Table
● List of all disk blocks.
● File: Linked list of blocks.

35

36

FAT
● Pros: Simple

● Easy to find free block.
● Easy to append file.
● Easy to delete a file.

● Cons:
● Small file access is slow.
● Random file access is very slow.
● Fragmentation:

● Blocks of a small file could be heavily scattered.
● Problem becomes worse as the usage increases.

37

EXT2 File System

38

EXT2 File System : inode

39

EXT2 File Size (Block Size: 4K)

● 12 File Block Pointers = 12*4 = 48K

● 1 Indirect block pointer (4K) = 1K direct block pointers = 1K*4K = 4MB

● 1 doubly indirect block pointer (4K) = 1K Indirect block pointers = 1K*4MB = 4 GB

● 1 triply indirect block pointer (4K) = 1K doubly Indirect block pointers = 1K*4GB =
4 TB

● Total Size = 48K + 4MB + 4GB + 4TB

40

EXT2 Locality

● Disk divided into block groups.

● Inode table spread throughout the disk.

41

EXT2 Locality

● All files with in a directory in same block group.

● Sub-directories in different block groups.

● First-fit algorithm for assigning data-blocks:
● Fragmented small files but contiguous large files.

42

EXT2 First Fit

43

EXT2

● Pros: Simple
● Efficient storage for both small and large files.
● Locality for data and inodes.

● Cons:
● Inefficient for tiny files.
● Inefficient encoding for very large files.
● Needs 10-20% space to avoid fragmentation.

44

File Traversal Review
● Let’s say you want to open “/one/two/three”

fd = open(“/one/two/three”, O_RDWR);

● What goes on inside the file system?

●open directory “/” (well known, can always find)

●search the directory for “one”, get location of “one”

●open directory “one”, search for “two”, get location of “two”

●open directory “two”, search for “three”, get loc. of “three”

●open file “three”

●(of course, permissions are checked at each step)

● Another example: mkdir /a/b/c

●Read inode 2 (root), look for “a”: find <“a”, 5>

●Read inode 5, look for “b”: find <“b”, 9>

●Read inode 9, verify no “c” exists; allocate c and add “c” to directory

● FS spends lots of time walking down directory paths

●this is why open is separate from read/write

●OS will cache prefix lookups to enhance performance

● /a/b, /a/bb, /a/bbb all share the “/a” prefix

45

Exploring EXT2
gzip -d disk.img.gz

$ ls -lh disk.img

-rw-rw-r-- 1 machiry machiry 2.0M Apr 6 2020 disk.img

mkdir /tmp/myfs

Mount the file system

$ sudo mount disk.img /tmp/myfs

$ mount | grep myfs

/home/machiry/Desktop/lec22/disk.img on /tmp/myfs type ext2 (rw,relatime)

46

Directory Structure

$ ls -lh /tmp/myfs/

total 14K

-rw-r--r-- 1 root root 10 Apr 6 2020 aa

lrwxrwxrwx 1 root root 2 Apr 6 2020 aa-symlink -> aa

drwx------ 2 root root 12K Apr 2 2020 lost+found

drwxr-xr-x 2 root root 1.0K Apr 6 2020 testdir

47

Checking Super Block
$ df -h | grep myfs

/dev/loop6 2.0M 23K 1.9M 2% /tmp/myfs

$ sudo dumpe2fs /dev/loop6

dumpe2fs 1.45.5 (07-Jan-2020)

Filesystem volume name: <none>

Last mounted on: /tmp/myfs

Filesystem UUID: 6430eccd-11d0-4ea9-bd26-ce6e946dc02b

Filesystem magic number: 0xEF53

…

Inode count: 256

Block count: 2048

Reserved block count: 102

Free blocks: 1988

Free inodes: 242

First block: 1

Block size: 1024

Fragment size: 1024

Reserved GDT blocks: 7

Blocks per group: 8192

Fragments per group: 8192

Inodes per group: 256

Inode blocks per group: 32

Group 0: (Blocks 1-2047)

 Primary superblock at 1, Group descriptors at 2-2

 Reserved GDT blocks at 3-9

 Block bitmap at 10 (+9)

 Inode bitmap at 11 (+10)

 Inode table at 12-43 (+11)

 1988 free blocks, 242 free inodes, 3 directories

 Free blocks: 59-512, 514-2047

 Free inodes: 15-256

Only one block group

48

Exploring inode map and block map
Inode bitmap, starts at block 11, few occupied (as indicated by 1s)
$ sudo dd if=/dev/loop6 bs=1024 skip=11 count=1 status=none | xxd -b -l 32
00000000: 11111111 00111111 00000000 00000000 00000000 00000000 .?....
00000006: 00000000 00000000 00000000 00000000 00000000 00000000
0000000c: 00000000 00000000 00000000 00000000 00000000 00000000
00000012: 00000000 00000000 00000000 00000000 00000000 00000000
00000018: 00000000 00000000 00000000 00000000 00000000 00000000

0000001e: 00000000 00000000

Block map: starting at block 10.
$ sudo dd if=/dev/loop6 bs=1024 skip=10 count=1 status=none | xxd -b -l 256
00000000: 11111111 11111111 11111111 11111111 11111111 11111111
00000006: 11111111 00000011 00000000 00000000 00000000 00000000
0000000c: 00000000 00000000 00000000 00000000 00000000 00000000
00000012: 00000000 00000000 00000000 00000000 00000000 00000000
00000018: 00000000 00000000 00000000 00000000 00000000 00000000
0000001e: 00000000 00000000 00000000 00000000 00000000 00000000
00000024: 00000000 00000000 00000000 00000000 00000000 00000000

49

Directory Structure

machiry@/tmp/myfs$ ls -li

total 14

12 -rw-r--r-- 1 root root 10 Apr 6 2020 aa

14 lrwxrwxrwx 1 root root 2 Apr 6 2020 aa-symlink -> aa

11 drwx------ 2 root root 12288 Apr 2 2020 lost+found

13 drwxr-xr-x 2 root root 1024 Apr 6 2020 testdir

$ cat aa

mycontent

50

Dumping Disk Block

$ sudo debugfs -R "stat <12>" /dev/loop6
Inode: 12 Type: regular Mode: 0644 Flags: 0x0

Generation: 4138714773 Version: 0x00000001

User: 0 Group: 0 Size: 10

File ACL: 0

Links: 1 Blockcount: 2

Fragment: Address: 0 Number: 0 Size: 0

ctime: 0x5e8b4e5f -- Mon Apr 6 11:44:31 2020

atime: 0x606c6806 -- Tue Apr 6 09:54:14 2021

mtime: 0x5e8b4e5f -- Mon Apr 6 11:44:31 2020

BLOCKS:

(0):513

TOTAL: 1

51

Dumping Disk Block

$ sudo dd if=/dev/loop6 bs=1024 skip=513 count=1 status=none | hexdump -C
00000000 6d 79 63 6f 6e 74 65 6e 74 0a 00 00 00 00 00 00 |mycontent.......|
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000400

52

BACKUP SLIDES

BACKUP STARTS

53

What is inside a disk drive?

54

More Deeper!

