File System Abstraction

ECE 469, April 10th

Aravind Machiry




Storage Technologies

e T[apes
o Magnetic Disks
o Flash Memory




How to store data on Disks?

e \Writing magnetized dots onto disk platter:
e Eachdot:0/1
e Unit of access: Block (512 or 4K)

We magnetize the surface in
the form of small dots.




How do we access storage?




File System Abstraction

] ) A File System
Sl Abstraction




What does a File System Store about a
file?

e File Metadata:

File Name.

Permissions (read or write).

owner/group.

Type of file.

List of disk blocks that contain data of the file.
Several others...




inode: Structure of metadata

e Indirect Node.
e Each file has one or more inodes corresponding to it.

® Where are inodes stored?
e Disk

e A portion of disk is dedicated to inodes.




File inode

File inode Pointers to
additional
File size (bytes) Indirect block/’ disk blocks
Storage device ID . >
Owner UID =z
Group UID %
Mode
Flags Doubldeircct block Pointersto
Timestamp indirect
ink ¢ >
Hard link count 3 blocks
d block
Indirect bloc
Tt
=
File block pointers .
HERERN ~
I — o
[ Blocks ] Pointers to
e additional
- disk blocks
>
S



File Permissions

e Type of accesses:
® Read (R)
e Write (W)
e Execute (X)

e \Who can access?
e Owner: A user who owns the file.
® Group : A group to which the file belongs.
e Others: All other users.




Permission Bits

e How many bits are needed to stored file permissions?
e 3 Types of accesses X 3 Entities = 9.
e Is-I.
rW-rw-
Bit Pattern (664): 110110
User, Group,

o Change Permissions:
e.g., chmod 775 <filePath>




Accessing File System From User Space

e System calls:
e create/open/read/write/stat/etc.

10



Directories

e Files namespace:
e Helpsin organizing files.

® How are they stored?

e Same as files, where the data block contains: List of (filename,
inode) pairs.

11



Single Level Directories

directory a test data mai coni heareco

RYYYYYPYY

® Single level grouping.
® All users see the same directories.

e FEasy to search.

e No grouping.

® Inconvenient naming.

12



Two Level Directories

master file

directo! /IUS 7]030 2| 563

\
&

Q‘—*/
O‘—:
©—

""" \ rlul Ir H daa”a

—IIL0E800 4,

e Each user can create grouping.
e Path names.

e Efficient search.
e Not enough grouping.

13



Tree Structured Directories

root‘ spell I bin |pragrams(

’ list ’ obj ’spel/ H all H last | first |

6 6

o T [

® Directories can now contain files or subdirectories.

e Efficient search and arbitrary grouping!

14



Directory Permissions

e Reading a directory:
Being able to list all files.

e Writing a directory:
Write contents into directory: Create a delete inside the directory.

e Executing a directory:
Able to access individual files in a directory.

e Difference between executing and read?

15



Directory Permissions

dir | Octal |delrerame | g ;o | readfile | witefile | 4y | cqsubdir | subdirlist | 3°9°SS
permissions create files contents contents subdir files

-w-
e 4 only f|Ie.

names (*)
RW- 6 only fllei

names (*)
==X 1 X X X X X X
-WX 3 X X X X X X X
R-X 5 X X X X X X X
RWX T X X X X X X X X

16



Mounting File System

e Mapping from a name in a filesystem to root of another

filesystem
e Allows users to manage multiple filesystems through a single

filesystem.

17



Mounting File System

e Mapping from a name in a filesystem to root of another

filesystem
e Allows users to manage multiple filesystems through a single

filesystem.

mount bar at foo
80

18



Links: File Aliases

e Multiple files representing the same data.
e How to create file aliases?

e Files having the same inode number.
e Afile whose data is the name of the original file.

19



Hard Link

e Files which point to the

e Hard links should belong to the same filesystem:
® |node numbers are specific to a file system.

File Name Type Inode Content
foo Regular 4357891
baz Regular 4357891

20



Hard Link : File Deletion

o What happens when a file gets deleted?

o What happens to the inode?
e Reference counting

21



Soft Link

e A file whose data is the path of the original file.

e Soft links can be created across file systems:
Referenced by file path.

File Name Type Inode Content

foo Regular 4357891

bar Soft Link 4768929 “...foo”



Soft Link : File Deletion

What happens when a file gets deleted?

target file v/s soft link file

23



Other Permissions

o setuid bit:
e For files with execute permissions.
e The file will always be executed by using owner user id.
e e.g., Network daemon.

o sticky bit

e Users can read/write but only owners can delete.
o e.g, “/tmp” folder.

24



Big Picture

Filesystem

layer /home /opt | /spare
Palgt)i,tei?n /dev/sda1 /dev/sda2 /dev/sdb1
P*I‘gysga' 3 Hard disk 1 £ Harddisk2

25



Looking into Simple File Systems

e File System Design Considerations.

e Simple File systems: FAT/EXT2.

26



File Access

File name
offset

int main(int argc, char *argv[])

{

S, S

int fd;

char buffer[

struct stat_b

DIR *dir;

struct dirent *entry;

name
5 O_RDONLY);

File offset ->
pread(fd, buffer,

ress mapping
AR
)

3. File meta data operation */
at(fd, &stat buf);
printf("file size %d\n

/* 4. Directory operation *"

dir = opendir("/ )’s

entry = readdir(dir);

printf("dir = %s\n", entry->d_name);
return 0;

*

r/
!

27



File Access

Directory

File name
offset

int main(int argc, char *argv[])

{

cmmmmmmmm----> File Number

offset

int fd;

char buffer[

struct stat_b

DIR *dir;

struct dirent *entry;

name
5 O_RDONLY);

File offset ->
pread(fd, buffer,

ress mapping
AR
)

3. File meta data operation */
at(fd, &stat buf);
printf("file size %d\n

/* 4. Directory operation *"

dir = opendir("/ )’s

entry = readdir(dir);

printf("dir = %s\n", entry->d_name);
return 0;

*

r/
!

28



File Access

Directory inode

File name --------—------- > File Number --------------—---- > Storage block
offset offset

int main(int argc, char *argv[])
int fd;
char buffer[4¢€
struct stat_buf;
DIR *dir;
struct dirent *entry;

/* 1. Path name -> inode mapping */
fd = open("/hom achiry/hello.c” , O_RDONLY);

/* 2. File offset -> disk block address mapping */
pread(fd, buffer, sizeof(buffer), 0);

/* 3. File meta data operation */
fstat(fd, buf);
printf("file size = %d\n", stat_buf.st_size);

Directory operation *"
= opendir( )'s
caddir(dir);
ir = %s\n", entry->d_name);




Key Data Structures of a FS

® inodes: File metadata and storage blocks

® Directories: Special files that contain:
e File name ->inode

e Freemap: which disk blocks are free/allocated?

30



File System Workload

® File Sizes:
® Are most files small/large?
Small
e which accounts for total storage: small/large?
Large

31



File System Workload

e File Sizes:
e Are most files small/large?
Small
e which accounts for total storage: small/large?
Large

e File Access:
e Are most file accesses to small/large files?
Small
e which accounts for more total I/O bytes: small/large?

Large
32



File System Design

e For Smallfiles:
e Small blocks for storage efficiency.
e File used together should be stored together.

e For Large files:
e Large blocks for storage efficiency.
e Contiguous allocation for fast sequential lookup.
e Efficient lookup for random access.

e Difficult to predict what a file will turn out to be.
33



File Allocation Table (FAT)

e Simple.
e Easytoimplement.
e Still used in Phones and Thumb drives.

e Key data structure: File Allocation Table
e List of all disk blocks.
e File: Linked list of blocks.

34



File Allocation Table

0 %
1 x
. 2
Directory -
Name P 2
Start sector 0 )
I Ry
3
1 19
A, 10 File A 5 = )
13 14
-
File B I i
B2 e
18 0
19 13
C,20 File C 20 - )
» 5]
s . — S
,4 ree space 25 50 ]
26 18
27 26
28 2 )
29 30 4
30 31 -
31 0 %

OO NI WN—O

Disk

35



FAT

® Pros:Simple
Easy to find free block.
Easy to append file.
Easy to delete a file.

e C(Cons:
Small file access is slow.
Random file access is very slow.
Fragmentation:
Blocks of a small file could be heavily scattered.
Problem becomes worse as the usage increases.

36



EXT2 File System

n blocks

1 block

37



EXT2 File System : inode

File inode

File size (bytes)

Pointers to
additional
Indirect block disk blocks

=
Storage device ID —
Owner UID =
Group UID %
Mode
Flags Doubly indirect block Pointers:to
Timestamp indirect
R - > .
Hard link count 3 blocks
d block
Indirect bloc
™, X~
—
File block pointers oy
HERNEN Iy
| o
[ Blocks ] Pointers to
e additional
disk blocks

38



EXT2 File Size (Block Size: 4K)

12 File Block Pointers = 12*4 = 48K
1 Indirect block pointer (4K) = 1K direct block pointers = 1K*4K = 4MB
1 doubly indirect block pointer (4K) = 1K Indirect block pointers = 1IK*4MB = 4 GB

1 triply indirect block pointer (4K) = 1K doubly Indirect block pointers = 1K*4GB =
47TB

Total Size = 48K + 4MB + 4GB + 4TB

39



EXT2 Locality

0Ox400

Boot
bBlock Block group O Block group 1 II Block group N
Super Group Data block Inode Inode
block descriptors Bitmap bitmap table Data blocks
1 block n blocks 1 block 1 block n blocks n blocks

Disk divided into block groups.

Inode table spread throughout the disk.

40



Block Group 0

Block Group 1

EXT2 Locality

All files with in a directory in same block group.
Sub-directories in different block groups.

First-fit algorithm for assigning data-blocks:
Fragmented small files but contiguous large files.

41



EXT2 First Fit

In-Use Free
Start of Block Block

Block [T T T T T T TTT] =
Group

Start of Write Two Block File

Block [T T T T T T TTT]-e=""

Group
Start of Write Largs File

Block cee
Group

42



EXT2

® Pros:Simple
Efficient storage for both small and large files.
Locality for data and inodes.

e C(Cons:
Inefficient for tiny files.
Inefficient encoding for very large files.
Needs 10-20% space to avoid fragmentation.

43



File Traversal Review

Let’s say you want to open “/one/two/three”
fd = open(“/one/two/three”, O_RDWR);
What goes on inside the file system?
eopen directory “/” (well known, can always find)
esearch the directory for “one”, get location of “one”
eopen directory “one”, search for “two”, get location of “two”
eopen directory “two”, search for “three”, get loc. of “three”
eopen file “three”
o (of course, permissions are checked at each step)
Another example: mkdir /a/b/c
eRead inode 2 (root), look for “a”: find <“a”, 5>
eRead inode 5, look for “b”: find <“b”, 9>
eRead inode 9, verify no “c” exists; allocate c and add “c” to directory
FS spends lots of time walking down directory paths
ethis is why open is separate from read/write

©0S will cache prefix lookups to enhance performance
/a/b, /a/bb, /a/bbb all share the “/a” prefix

44



Exploring EXT2

gzip -d disk.img.gz

S Is -lh disk.img
-rw-rw-r-- 1 machiry machiry 2.0M Apr 6 2020 disk.img

mkdir /tmp/myfs

# Mount the file system
S sudo mount disk.img /tmp/myfs

S mount | grep myfs
/home/machiry/Desktop/lec22/disk.img on /tmp/myfs type ext2 (rw,relatime)

45



Directory Structure

Sls -lh /tmp/myfs/

total 14K

-rw-r--r-- 1 root root 10 Apr 6 2020 aa

I[rwxrwxrwx 1 root root 2 Apr 6 2020 aa-symlink -> aa
drwx------ 2 root root 12K Apr 2 2020 lost+found
drwxr-xr-x 2 root root 1.0K Apr 6 2020 testdir

46



Checking Super Block

S df -h | grep myfs

/dev/loop6 2.0M 23K 1.9M 2% /tmp/myfs

$ sudo dumpe2fs /dev/loop6
dumpe2fs 1.45.5 (07-Jan-2020)
Filesystem volume name: <none>

Last mounted on: /tmp/myfs

Filesystem UUID: 6430eccd-11d0-4ea9-bd26-ce6e946dc02b

Filesystem magic number: OxEF53

Inode count: 256
Block count: 2048

Reserved block count: 102

Free blocks: 1988
Free inodes: 242
First block: 1

Block size: 1024
Fragment size: 1024

Reserved GDT blocks: 7
Blocks per group: 8192
Fragments per group: 8192
Inodes per group: 256
Inode blocks per group: 32

Group 0: (Blocks 1-2047)
Primary superblock at 1, Group descriptors at 2-2
Reserved GDT blocks at 3-9
Block bitmap at 10 (+9)
Inode bitmap at 11 (+10)
Inode table at 12-43 (+11)
1988 free blocks, 242 free inodes, 3 directories
Free blocks: 59-512, 514-2047
Free inodes: 15-256

Only one block group

47



Exploring inode map and block map

# Inode bitmap, starts at block 11, few occupied (as indicated by 1s)

$ sudo dd if=/dev/loop6 bs=1024 skip=11 count=1 status=none | xxd -b -I 32
00000000: 11111111 00111111 00000000 00000000 00000000 00000000 .7....
00000006: 00000000 00000000 00000000 00000000 00000000 00000000 ......
0000000c: 00000000 00000000 00000000 00000000 00000000 00000000 ......
00000012: 00000000 00000000 00000000 00000000 00000000 00000000 ......
00000018: 00000000 00000000 00000000 00000000 00000000 00000000 ......

0000001e: 00000000 00000000

# Block map: starting at block 10.

$ sudo dd if=/dev/loop6 bs=1024 skip=10 count=1 status=none | xxd -b -I 256
00000000: 11111111 11111111 11111111 11111111 11111111 11111111 L
00000006: 11111111 00000011 00000000 00000000 00000000 00000000 ......
0000000c: 00000000 00000000 00000000 00000000 00000000 00000000 ......
00000012: 00000000 00000000 00000000 00000000 00000000 00000000 ......
00000018: 00000000 00000000 00000000 00000000 00000000 00000000 ......
0000001e: 00000000 00000000 00000000 00000000 00000000 00000000 ......
00000024: 00000000 00000000 00000000 00000000 00000000 00000000 ......

48



Directory Structure

machiry@/tmp/myfsS Is -li

total 14

12 -rw-r--r-- 1 root root 10 Apr 6 2020 aa

14 [rwxrwxrwx 1 root root 2 Apr 6 2020 aa-symlink -> aa
11 drwx------ 2 root root 12288 Apr 2 2020 lost+found

13 drwxr-xr-x 2 root root 1024 Apr 6 2020 testdir

S cat aa
mycontent

49



Dumping Disk Block

S sudo debugfs -R "stat <12>" /dev/loop6

Inode: 12 Type: regular Mode: 0644 Flags: 0x0
Generation: 4138714773 Version: 0x00000001
User: 0 Group: O Size:10

File ACL: O

Links: 1 Blockcount: 2

Fragment: Address:0 Number:0 Size: 0
ctime: 0x5e8b4e5f -- Mon Apr 6 11:44:31 2020
atime: 0x606c6806 -- Tue Apr 6 09:54:14 2021
mtime: Ox5e8b4e5f -- Mon Apr 6 11:44:31 2020
BLOCKS:

(0):513

TOTAL: 1

50



Dumping Disk Block

$ sudo dd if=/dev/loop6 bs=1024 skip=513 count=1 status=none | hexdump -C

00000000 6d 79 63 6f 6e 74 65 6e 74 0a 00 00 00 00 00 00 |mycontent....... |
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 00 |....ovveeneveeee |

*

00000400

51



BACKUP SLIDES

BACKUP STARTS

52



What is inside a disk drive?

Platters

connector

53



More Deeper!

54



